性的或數量的關係。為了使這種關係反映事物的本質,力學家要善於抓住起主要作用的因素。屏棄或暫時屏棄一些次要因素。
力學中把這種過程稱為建立模型。質點、質點系、剛體、彈性固體、粘性流體、連續介質等是各種不同的模型。在模型的基礎上可以運用已知的力學或物理學的規律,以及合適的數學工具,進行理論上的演繹工作,匯出新的結論。
依據所得理論建立的模型是否合理,有待於新的觀測、工程實踐或者科學實驗等加以驗證。在理論演繹中,為了使理論具有更高的概括性和更廣泛的適用性,往往採用一些無量綱引數如雷諾數、馬赫數、泊松比等。這些引數既反映物理本質,又是單純的數字,不受尺寸、單位制、工程性質、實驗裝置型別的牽制。
力學研究工作方式是多樣的:有些只是純數學的推理。甚至著眼於理論體系在邏輯上的完善化;有些著重數值方法和近似計算;有些著重實驗技術等等。而更大量的則是著重在運用現有力學知識,解決工程技術中或探索自然界奧秘中提出的具體問題。
現代的力學實驗裝置。諸如大型的風洞、水洞,它們的建立和使用本身就是一個綜合性的科學技術專案。需要多工種、多學科的協作。應用研究更需要對應用物件的工藝過程、材料性質、技術關鍵等有清楚的瞭解。在力學研究中既有細緻的、獨立的分工,又有綜合的、全面的協作。(未完待續)
250 物理學之力學 中
應用領域
力學是物理學、天文學和許多工程學的基礎,機械、建築、航天器和船艦等的合理設計都必須以經典力學為基本據。機械運動是物質運動的最基本的形式。機械運動亦即力學運動。
在力學理論的指導或支援下取得的工程技術成就不勝列舉。最突出的有:以人類登月、建立空間站、太空梭等為代表的航天技術;以速度超過5倍聲速的軍用飛機、起飛重量超過300t、尺寸達大半個足球場的民航機為代表的航空技術;以單機功率達百萬千瓦的汽輪機組為代表的機械工業,可以在大風浪下安全作業的單臺價值超過10億美元的海上採油平臺;以排水量達5x105t的超大型運輸船和航速可達30多節、深潛達幾百米的潛艇為代表的船舶工業;可以安全執行的原子能反應堆;在地震多發區建造高層建築;正在陸上運輸中起著越來越重要作用的高速列車,等等,甚至如兩彈引爆的核心技術,也都是典型的力學問題。
總之還有許多的問題。
歷史發展
力學(dynamics)知識最早起源於對自然現象的觀察和在生產勞動中的經驗。人們在建築、灌溉等勞動中使用槓桿、斜面、汲水等器具,逐漸積累起對平衡物體受力情況的認識。古希臘的阿基米德對槓桿平衡、物體重心位置、物體在水中受到的浮力等作了系統研究,確定它們的基本規律,初步奠定了靜力學即平衡理論的基礎。
古代人還從對日、月執行的觀察和弓箭、車輪等的使用中,瞭解一些簡單的運動規律,如勻速的移動和轉動。但是對力和運動之間的關係,只是在歐洲文藝復興時期以後才逐漸有了正確的認識。
伽利略在實驗研究和理論分析的基礎上。最早闡明自由落體運動的規律,提出加速度的概念。牛頓繼承和發展前人的研究成果(特別是開普勒的行星運動三定律),提出物體運動三定律。伽利略、牛頓奠定了動力學的基礎。牛頓運動定律的建立標誌著力學開始成為一門科學。
此後。力學的研究物件由單個的自由質點,轉向受約束的質點和